

Pushing the Building Envelope: The Impact of Cutting-Edge Technologies

Thursday, July 11th, 2019 9:00 AM - 10:30 AM

Session Panel

Mahabir Bhandari

Oak Ridge National Laboratory (ORNL)

Wendell Brase

University of California, Irvine

Jessica Abralind

Arlington County (VA)

Cedar Blazek DOE (Moderator)

Mahabir Bhandari

Oak Ridge National Laboratory (ORNL)

Pushing the Envelope: Cutting Edge Research

Mahabir Bhandari, PhD

Building Envelope and Urban Systems Research Group

Oak Ridge National Laboratory

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Agenda Topics

- Join us! Get involved with the Better Building Building Envelope Technology Research Team (ETRT)
- Envelope Research: Emerging Technologies
- Envelope Deployment: Integration/Field Studies
- Q&A

Acknowledgement: Diana Hun, PhD, ORNL Building Envelope Subprogram Manager and other team members

Actional Laboratory BUILDING TECHNOLOGIES National Laboratory INTEGRATION CENTER

Building Envelope: 5.81 Quads

The commercial **building envelope** is the **primary determinant** of the amount of **energy required** to heat, cool, and ventilate a building

Table 2. Primary Energy Consumption Attributable to Fenestration and Building Envelope Components in 2010 (Quads)⁶

Building Component	Residential		Commercial	
	Heating	Cooling	Heating	Cooling
Roofs	1.00	0.49	0.88	0.05
Walls	1.54	0.34	1.48	-0.03
Foundation	1.17	-0.22	0.79	-0.21
Infiltration	2.26	0.59	1.29	-0.15
Windows (Conduction)	2.06	0.03	1.60	-0.30
Windows (Solar Heat Gain)	-0.66	1.14	-0.97	1.38

Source: Office of Energy Efficiency and Renewable Energy 2011b; Office of Energy Efficiency and Renewable Energy 2011d; Office of Energy Efficiency and Renewable Energy 2011e; Office of Energy Efficiency and Renewable Energy 2011g

Better Buildings Alliance: Leadership to Deploy Advanced Technologies

To join, contact Melissa Lapsa at lapsamv@ornl.gov

A Unique and Diverse Team...

Informing R&D Plans, Case Studies, and Demonstrations

Envelope Research: Emerging Technologies

SALE AND A CANAGE AND A CANAGE

Insulation Materials with High-R/in

Vacuum Insulated Panels (VIPs)

Evacuated Spheres

- Evacuated hollow sphere
- Spherical air/vapor barrier
- Damaged barrier
- C Sphere at ambient pressure
- Binder

Actional Laboratory BUILDING TECHNOLOGIES RESEARCH AND INTEGRATION CENTER

Lightweight Insulated Precast Panels

New design

Concrete density = 100 pcf Panel weight = 25 psf

Second trial

Photo courtesy of Gate Precast

Fiber Reinforced Polymer (FRP) Insulated Panels

Photo courtesy of Kreysler & Associates

Photo courtesy of Kreysler & Associates

Self-Healing Sealant

Joints are among the weakest areas in the air and water barrier systems of building envelopes

Adhesion Failure

Cohesion Failure

Actional Laboratory BUILDING TECHNOLOGIES RESEARCH AND INTEGRATION CENTER

After "self-healing" at room temperature

Additive Manufacturing and Integrated Energy (AMIE)

ASSEMBLY SEQUENCE

New Mold Manufacturing Process for Precast Concrete

Building Elevation

First 3D Printed Mold Prototype

Cornice Cross Section

Current Assembly Process

3D Printing

Machining

First building with precast façade made with 3D printed molds

New Mold Manufacturing Process

SALE AND A CONTRACT A

Onsite 3D Printing of Buildings

Traditional Gantry System

ORNL's SkyBAAM

SALE AND A CONTRACT A

SkyBAAM

Attional Laboratory Building Technologies Research and INTEGRATION CENTER

Envelope Deployment: Integration/Field Studies

SALE AND A CONTRACT A

Building Envelope Performance Metric

Actional Laboratory

SALE AND A CONTRACT A

42% I 2.8h I 8.5 *Peak Time Resistance*

Cross-Laminated Timber

- Lendlease
 - Owner, developer, design-builder, and asset manager
 - CLT hotels
 - Redstone Arsenal, AL
 - Fort Drum, NY
 - Fort Bragg, NC
- Validation study
 - Evaluation of energy/hygrothermal performance
 - Fort Jackson, SC
 - Energy savings
 - Peak load reductions

SALE COAK RIDGE BUILDING TECHNOLOGIES National Laboratory INTEGRATION CENTER

Air Leakage Calculator

- Online tool uses simulation results from EnergyPlus and CONTAM
- Estimates from improvements in airtightness
 - Energy savings
 - Cost savings
 - Reductions in moisture transfer
- 50+ cities
- Building types
 - Standalone retail
 - Medium office
 - Mid-rise apartment
 - High-rise apartment
 - Hospital
 - Large hotel
 - Secondary school

Actional Laboratory

Predicted Savings	Electricity	Natural Gas	
Energy	3,950 kWh	321,002 ft³	
Cost	\$ 434.50	\$ 3,540.66	
Total Cost Savings	\$ 3.975.15		

Envelope Research Facilities

Facilities for Assembly Evaluations

Syracuse, NY

Charleston, SC

Tacoma, WA

Facilities for Whole Building Evaluations

Metal building that simulates construction from the 1980s

Commercial building that simulates construction from the 1980s

Residential building

Join the Envelope Technology Research Team!

- Field testing the BEP metric
- Investigating market interest in an Envelope focused challenge and recognition campaign
- ETRT Team Meetings: Fall 2019

To join, contact Melissa Lapsa at lapsamv@ornl.gov

Thank You!

Questions/comments: Melissa Lapsa: <u>lapsamv@ornl.gov</u> Mahabir Bhandari: <u>bhandarims@ornl.gov</u>

SALE AND A CANAGE AND A CANAGE

Wendell Brase

University of California, Irvine

Pushing the Building Envelope: The Impact of Cutting-Edge Technologies

Wendell Brase

Associate Chancellor - Sustainability University of California, Irvine

UC Irvine's Path to Better Buildings

Started in 1992, when...

- Buildings built prior decade met Title 24 upon *completion*
- Premature major maintenance

First Step : Set Goals

- 1. Beat Title 24 by 30% for new construction
- 2. No major maintenance for 20 years
- 3. Develop a framework of life-cycle performance standards

University of California, Irvine Construction Standards and Costs

Overall Goals and Quality Standards Building Organization and Massing Design Concepts that Work Synergistically for Laboratory Buildings Structural and Foundation Systems Building Mechanical Systems Management of Solar Heat Gain Roofing and Flashings Site Development Exterior Cladding and Interior Finishes

Priorities and Trade-Offs

Benefits and Cost-Control Strategies

Results

Example of New Performance Standard : Massing

Second Step : Research (1993)

- 1. Premature life-cycle failures prior 20 years
- 2. Labs 21 (now Intl. Institute for Sustainable Laboratories)
- 3. LBNL study on building envelope

Step 3 : Shaped Design-Build to Incentivize Life-Cycle Design

- Beat Title 24 20-30%
- No major maintenance for 20 years
- Apply framework of life-cycle performance standards
- Use design-build evaluation criteria to score requirement sufficiency and incentivize stretch goals

Mechanical System Energy Performance Requirements

Air-handler face velocity / air-speed through filtration	
Total air system pressure drop (supply+exhaust+filtration)	
Air-handler and duct sound-attenuators	
Minimum occupied lab air-changes per hour (ACH)	
Minimum unoccupied lab air-changes per hour (ACH)	
"Purge" laboratory air changes per hour (ACH)	
Exhaust stack discharge velocity (labs)	
Exhaust by-pass damper (outside air into exhaust header)	
Illumination power density	
Heat-generating equipment exhaust	
Fume hoods	

41

Example of Building Completed 2004

Step 4 : 2007 Climate-Neutrality Goal Raised the Bar

2008-2019 Performance Goals for Energy

- Out-perform Title 24 by 50%
- Mechanical system performance requirements
- "Smart" HVAC controls and high efficiency lighting
- "Information layer" to ensure sustained "smart" performance
- Use design-build process to drive results.

What is a "Smart" Building?

Just enough energy, at just the right place, at just the right time!

How:

- ✓ Challenge all accepted design practices
- ✓ Use software and sensors to make building systems dynamic and "smart"

Key Components of a "Smart" Building

- Demand-controlled HVAC
- Many HVAC zones
- Right-sizing airchanges to minimize reheat
- Demand-controlled LED lighting.

Mechanical System Energy Performance Requirements

Air-handler face velocity / air-speed through filtration	300 ft. (91.4 m.) /minute maximum
Total air system pressure drop (supply+exhaust+filtration)	Labs: < 5 in. of water (1,250 pascals) Non-lab spaces: < 3.5 in. of water (875 pascals)
Air-handler and duct sound-attenuators	None
Minimum occupied lab air-changes per hour (ACH)	4 ACH with contaminant sensing (Aircuity)
Minimum unoccupied lab air-changes per hour (ACH)	2 ACH with contaminant sensing + reduced thermal inputs while building "coasts" during setback
"Purge" laboratory air changes per hour (ACH)	10-12 ACH when contaminants sensed
Exhaust stack discharge velocity (labs)	Requires wind study; design goal ~1,500 FPM; > 1,500 FPM if/when necessary to avoid re-entrainment
Exhaust by-pass damper (outside air into exhaust header)	Only activated by adverse wind conditions
Illumination power density	< 0.5 watt/SF including task lighting where needed
Heat-generating equipment exhaust	Linear exhaust grilles over equipment such as freezers
Fume hoods	Occupancy controlled, low-flow/high performance

What Next?

- ☑ Lighting efficient and demand-controlled
- ☑ HVAC efficient and demand-controlled
- ☑ Exhaust efficient and demand-controlled
- ☑ Envelope thermal mass
- ☑ Cool roof
- ☑ Windows high-performance glass
- □ ???
- □ ???

Sunlight Heat Gain

High-performance glass Electrochromic glass w/smart controls Fully shaded glass Combination of HP glass + 50% shading 75% effective90% effective98% effective88% effective

UCI Sunlight Management Performance Requirements

Condition	Shading Requirement	Glazing Type	Interior Window Covering / Glare Control	Comments
North, northeast, and northwest exposures	No exterior or glass shading required for facades > 30° N of E or W	Clear insulated glass	Perforated blinds or	Not tinted
N / E / W exterior sun-shading devices	Reduce 85% of annual direct sun	Clear insulated glass	shades for glare and sun-control (except lobbies, stairwells, other public spaces)	Include shade from adjacent buildings, mature trees, building overhangs, recesses, and fins
N / E / W exterior sun-shading + high performance glass	Reduce 85% of annual direct sun	High performance glass	,	Example: 40% effective seasonal shading system with 0.25 shading coefficient would attain 85% annual performance requirement
N / E / W electrochromic glass	Reduce 85% of annual direct sun	Electrochromic (dynamic) glass	Not required, as shading coefficient of 0.10 can be achieved	Electrochromic glass with smart controls & dynamic shading coefficient

Value Priority Assigned to Daylighting

- LEED
- Other green rating systems
- An obsolete value?

Fluorescent vs. High-CRI LED Lighting

Our Solution at UC Irvine

- CRI-95 lighting
- More selective use of glass

UC

Other Ideas Being Explored

- "Fatter" buildings
- Larger trees
- Lutron pilot
- Shift energy load to low-carbon

UC

Exploiting the "Duck Curve" to Reduce Carbon Footprint

Net load - March 31

How Do We Pay For Life-Cycle Performance?

Cost-Control & Savings Opportunities

Areas Into Which Savings are Redirected

Avoid custom-fabricated, exotic, specialized materials	High-quality teaching spaces
Conventional interior finishes	Stainless steel flashings
No floor coverings in laboratories	Durable hardware and interior finishes
Generic acoustical materials	Operable office windows (w/HVAC interlocks)
No sound absorption in partial-height partitions or walls w/doors	Quality hardscape and landscape features
	Sound isolation where needed (e.g., offices)
Downsize HVAC due to sun shading Essentially eliminate window coverings if electrochromic glass is used	Weather-protection canopy to extend life of roof-mounted equipment
glass is used	Sun-shading 85% overall annual effectiveness
Eliminate exterior wall insulation, furring, sheetrock, and paint	Exterior walls \geq 12 in. concrete integral color, exposed both sides

Results: How Much Better After 25 Years?

	1992	2019
Energy performance	Met code, then deteriorated	30-50% better than code no deterioration
Premature major maintenance	Excessive	Zero
LEED Awards		18 Platinum 10 Gold
National Awards	Numerous architectural awards	DBIA Awards: 4 National Awards of Merit 3 National Awards of Excellence Excellence in Engineering Design Project of the Year

UCI

University of California, Irvine Construction Standards and Costs The University of California, Irvine pursues performance goals in new construction and applies quality the University of Camornia, invine pursues performance goals in new construction and applies quarry standards that affect the costs of capital projects. Construction costs are not "high" or "low" in the *obstract*, but rather in relation to specific quality standards and the design solutions, means, and methods used to attain these standards. Thus, evaluating whether construction costs are appropriate involves determining Resultant project costs are reasonable compared to projects with essentially the same Quality standards are excessive, insufficient, or appropriate; whether: "Quality" encompasses the durability of building systems and finishes; the robustness and life-cycle Quality encompasses the durability or building systems and innisnes; the robustness and inter-cycle performance of building systems; the aesthetics of materials, their composition, and their detailing; and the resource sustainability and efficiency of the building as an overall system. Overall Goals and Quality Standards UCI, in order to support distinguished research and academic programs, builds facilities of high quality. As such, in order to support distinguished research and academic programs, builds facilities or nigh quality. As quality, of the best facilities of other UC campuses, leading public universities, and other research institutions with whom we compete for faculty, students, sponsored research, and general reputation. Since 1992, new buildings have been designed to achieve five broad goals: New buildings must "create a place," rather than constitute stand-alone objects – forming social, aesthetic, contextually sensitive relationships with neighboring buildings and the New buildings reinforce a consistent design framework of classical contextual architecture, applied in ways that convey a feeling of permanence and quality, and interpreted in ways that meet the contemporary and changing needs of a modern research university. New buildings employ materials, systems, and design features that will forestall the expense of major maintenance (defined as >1 percent of value) for at least 20 years. New buildings attain exemplary sustainability performance – at least LEED Gold and outperforming California's Title 24 energy efficiency standards by as much as 50 percent. 5. Capital construction projects are designed and delivered within the approved project budget, 3. scope, and schedule.

https://designandconstruction.uci.edu/documents/UCIConstructionStandardsandCosts_May2018rev.pdf

UCI

Page 1 of 9

How Did We Do It?

- 1. Technology
- 2. Questioned status-quo design practices
- 3. Targeted energy waste that was built-into building systems
- 4. Made intentional, explicit trade-offs to fund life-cycle performance
- 5. Never stop improving!

Presented Monday, July 11, at the 2019 Better Buildings Summit, Arlington, VA © 2019 Regents of the University of California

UCI University of California, Irvine

Jessica Abralind

Arlington County (VA)

Pushing the Building Envelope in Arlington County, VA

Jessica Abralind, Green Building Planner Arlington County, VA July 11, 2019

ARLINGTON INITIATIVE TO RETHINK ENERG

Outline

- Arlington's Facility Sustainability Policy for New Construction and Major Renovation
- Renovation example Solid Waste and Traffic Engineering and Operations facility
- New Construction example Lubber Run Community Center

Arlington's Facility Sustainability Policy

- **RECENT UPDATE:** more focus on building enclosure, prioritize passive energy saving strategies like insulation, air sealing
- POLICY INCLUDES EARTHCRAFT LIGHT COMMERCIAL (ECLC) RATING SYSTEM AS COMPLIANCE PATH because it fits smaller buildings better than LEED and includes a blower door test and air leakage performance standards
- **INTERDEPARTMENTAL WORKING GROUP** including facilities maintenance, facilities design and construction, Parks, Fire, Housing, Inspection Services
- WHY? energy and GHG reductions, cost savings, occupant comfort and health

Facility Sustainability Policy - Implementation

- SW TE+O first time trying ECLC, first blower door test, first pre-construction occupant survey
- CHALLENGE: design team was already engaged and ECLC, testing, and envelope improvements were not in the scope of work

SW & TE&O Assessment

ASSESSMENT METHODS:

- ✓ Thermal comfort survey
- ✓ Enclosure test
- ✓ Field Observations & thermal imaging
- ✓ Energy Benchmarking

Figure 1. SW & TEO located at 4300 29th Street South, Arlington County, VA.

Commercial Enclosure Definitions

Enclosure:	part of any building that physically separates the exterior environment from the interior environment(s); (BSC, 2006)
Infiltration:	the flow of outdoor air into a building through cracks and other unintentional openings and through the normal use of exterior doors for entrance and egress; (ASHRAE, 2009)
Exfiltration:	is leakage of indoor air out of a building through through cracks and other unintentional openings; (ASHRAE, 2009)
Air barrier:	a plane that one intends to be the sole, or at least the primary , resistor to airflow; (Straube and Burnett, 2005)
EarthCraft Ligh Commercial:	a regional green building certification program offering third-party recognition for environmentally responsible design and construction practices for small-scale commercial buildings in the Southeast (Southface, 2018)

Site and Building Context

CHARACTERISTIC	SW & TEO
Building Use Group	B-1
Building Conditioned Floor Area (Ft ²)	15,234*
Occupancy Load	130*

CLIMATE ZONE 4A ARLING	TON, VA
Elevation (ft.)	66
Mean Air Temperature (°F)	58.1
Mean Relative Humidity (%)	65.8
Daily Solar Ration (kWh/m2/d)	3.95
Atmospheric Pressure (kPa)	101.7
Mean Wind Speed (mph)	8.5
Earth Temperature (°F)	56
Heating Degree-Days, HDD (64.4 °F)	4001
Cooling Degree-Days, CDD (64.4 °F)	1524

ARLINGTON INITIATIVE TO RETHINK ENERGY

User-centered Assessment THERMAL COMFORT:

- ✓ 2-page survey
- ✓ Likert scale, multiple choice
- ✓ Why? Buildings are for people
- ✓ Users are rich sources of data

ARLINGTON INITIATIVE TO RETHINK ENERG

Enclosure Test Plan

Enclosure Test Results

Enclosure Improvement Opportunities

Enclosure Opportunities

ENCLOSURE PENETRATIONS

- ✓ 13 intentional holes
- ✓ Sealed for test
- ✓ Testing dampers

ARLINGTON INITIATIVE TO RETHINK ENERG

Arlington Initiative to Rethink Energy

Project Team

PHILIP AGEE Technical Director Viridiant

▷EarthCraft Light Commercial
▷ASHRAE Level Commercial Audits
▷DOE Advanced Commercial Building Initiative

JESSICA ABRALIND Green Building Planner Arlington County Government

JEREMY JENKINS

Construction Management Specialist Arlington County Government

ARLINGTON INITIATIVE TO RETHINK ENERGY

Arlington Initiative to

Enerav

Lubber Run Community Center

- VMDO/ CMTA design team
- 53,000 s.f. new construction
- Targeting:
 - ✓ Net Zero Energy "Ready"
 - Energy Use Intensity (EUI) of 24 kbtu/s.f./year
 - ✓ LEED Silver
 - ✓ Building Enclosure Test

Lubber Run Community Center

Green building highlights

- ✓ Ground Source Heat Pumps
- ✓ LEDs
- ✓ 30% window to wall ratio (WWR)
- East-West building orientation
- ✓ Thermomass[®] Concrete Sandwich Panel

Thermomass® Concrete Sandwich Panel

ARLINGTON INITIATIVE TO RETHINK ENERG

Thermomass Concrete Sandwich Panel

ARLINGTON INITIATIVE TO RETHINK ENERG

Thank you!

Jessica Abralind, Green Building Planner

Arlington County, Virginia Office of Sustainability and Environmental Management

Thank You

Provide feedback on this session in the Summit App!

Download the app to your mobile device or go to event.crowdcompass.com/bbsummit19

Contact Us

(Speakers)

- Mahabir Bhandari, Oak Ridge National Laboratory (ORNL)
 - <u>bhandarims@ornl.gov</u>
- Wendell Brase, University of California, Irvine
 - wcbrase@uci.edu
- Jessica Abralind, Arlington County (VA)
 - jabralind@arlingtonva.us

(Moderator)

- Cedar Blazek, DOE
 - cedar.blazek@ee.doe.gov

